1/3q^2=-1/3q^2+10

Simple and best practice solution for 1/3q^2=-1/3q^2+10 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/3q^2=-1/3q^2+10 equation:



1/3q^2=-1/3q^2+10
We move all terms to the left:
1/3q^2-(-1/3q^2+10)=0
Domain of the equation: 3q^2!=0
q^2!=0/3
q^2!=√0
q!=0
q∈R
Domain of the equation: 3q^2+10)!=0
q∈R
We get rid of parentheses
1/3q^2+1/3q^2-10=0
We multiply all the terms by the denominator
-10*3q^2+1+1=0
We add all the numbers together, and all the variables
-10*3q^2+2=0
Wy multiply elements
-30q^2+2=0
a = -30; b = 0; c = +2;
Δ = b2-4ac
Δ = 02-4·(-30)·2
Δ = 240
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{240}=\sqrt{16*15}=\sqrt{16}*\sqrt{15}=4\sqrt{15}$
$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{15}}{2*-30}=\frac{0-4\sqrt{15}}{-60} =-\frac{4\sqrt{15}}{-60} =-\frac{\sqrt{15}}{-15} $
$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{15}}{2*-30}=\frac{0+4\sqrt{15}}{-60} =\frac{4\sqrt{15}}{-60} =\frac{\sqrt{15}}{-15} $

See similar equations:

| -(m-2)+5=-(3+m) | | 65=2x+23 | | -30-6m=-6m-6(5+4m) | | 8.4÷y=1.2÷y | | y2+7y-10=0 | | -7h=-(2h-18) | | 3(2m-8)=-19+7m | | 19-y=5 | | 7x+2x-x=178 | | -20=6(9y+8) | | 250=5(1+7n) | | -39+6v=7(v-5) | | 12/4+1/4l=4 | | 8(-4k-4)-2k=104 | | 3/4+5x=13/4 | | 13/5x+12=8 | | 108/12=k/9 | | 7p+14.89=19.32 | | x+x+x+3x=54 | | 203=-5(7n-4)=8 | | 3m+4(5m-3)=-12-8m | | 6+5x=79 | | 6x+21-2x=14 | | 5/9m=9 | | 7n+8(7n-7)=385 | | x+(3x/2)=20 | | y-7+8y=12 | | 3/8s=7/8 | | 24-6x+120=180 | | -7(2y-1)+y=2(y+8) | | 1+2v=-35 | | 2.95=0.25(5d+1)+0.10d |

Equations solver categories